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Abstract  

The purpose of this investigation was to determine whether hydrogen injected into a diesel 

internal combustion engine has the potential to reduce overall fuel consumption.  The most 

economical means of performing the required tasks was used whenever possible in an attempt 

to mimic a small off-grid application.  The genset was a small 4kW compression ignition diesel.  

The electrolyzer was an off-the-shelf model designed for automotive applications.  It combines 

hydrogen and oxygen output and is currently found from many manufacturers over the internet.  

It was found that the H2/02 mixture actually did help conserve fuel by about 18% in a low load 

case but generally, savings were under 5%.  At a higher proportion of generator rated load, fuel 

consumption was shown to increase with H2/02 injection by up to 5%, thus the H2/02 output 

must be optimized to achieve any savings.  Reasons for this phenomenon are discussed and 

recommendations for further research are included.  
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Introduction 

Background  

Diesel engines have a significant social, environmental, and economic impact that is 

readily evident to most people on Earth.  Food consumed every day by many people today has 

been produced by the use of diesel fuel.  Tractors used to work the soil and harvest crops, 

irrigation pumps to sustain them, and transport trucks to deliver them, primarily use diesel fuel.   

With a growing population, minimal options, and dwindling fossil fuel resources, diesel 

conservation should be a priority or malnutrition may result in many areas.   

Fossil fuel combustion releases greenhouse gases and particulates which are harmful 

to humans and the environment.  The rapid rise of CO2 levels in the atmosphere in recent years 

is directly attributable to the combustion of fossil fuels1.  There is evidence that rising CO2 

levels can lead to climate change1.  On a local scale, particulates from engine exhaust may 

cause health problems.  

No economy is immune to the effect of diesel fuel.  Manufacturers use diesel to 

transport raw materials and finished products as well as to generate electricity.  It may be 

argued that the global economy would cease to function without diesel fuel. 

The main contribution of this investigation is to reduce diesel fuel consumption which 

could have far reaching social, environmental, and economic benefits.   

Additionally, this investigation provides the opportunity to encourage development in 

renewable energy, specifically, integrating hydrogen generation in wind diesel grids.   Hydrogen 

can be the energy storage that balances the wind output and load fluctuations when coupled 

with either a fuel cell or diesel generator.   At the same time, hydrogen in renewable energy 

dominated grids can encourage the transition to hydrogen transport. 

If positive results occur, it may be feasible to extend the efficiency gains into all fossil 

fuel, or biomass combustion equipment such as heaters, cooking equipment, gas turbines, and 

gasoline/petrol engines.    
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Theory  

Supplemental hydrogen injection was considered for fuel efficiency improvement for 

this investigation on account of its beneficial combustion characteristics, ease of use, and 

economic production.  Currently, there exists much debate over the effects of supplemental 

hydrogen in internal combustion engines.  This was another motivator to verify and quantify 

any efficiency improvements as claimed by some manufacturers2,3,4,5.    

The following summary of hydrogen properties with respect to internal combustion 

engines (ICEs) is derived from a training module for hydrogen engine technicians prepared by 

the College of the Desert and presented on the Department of Energy, Energy Efficiency and 

Renewable Energy (EERE) website6.   

Hydrogen has increased flammability relative to other fuels, meaning that it combusts 

over a wider range of fuel air mixtures. The advantage to this is that the engine can run leaner 

(decreases fuel/air compared to ideal stoichiometric ratio).  Leaner mixtures yield more 

complete combustion since there is both a decreased fuel volume to combust in a given time 

and increased surface area to complete the reaction. Another advantage to lean operation is 

decreased emissions resulting from lower final combustion temperatures, which helps mitigate 

the production of nitrogen oxides.  Since more oxygen is available, unburned hydrocarbons and 

carbon monoxide emissions logically decrease as well.  

Ignition energy is defined as the energy needed to ignite a fuel.  Hydrogen has an 

ignition energy value an order of magnitude less than that of gasoline.  This is another factor 

that allows leaner mixtures.  However, it also means that hydrogen may ignite from “hot spots” 

on cylinders, resulting in precombustion, potentially causing engine damage. 

Hydrogen flames travel closer to the cylinder walls.  The College of the Desert report 

calls this property decreased quenching distance, meaning it is more difficult to quench a 

hydrogen flame.  One issue to manage as a result of this is engine backfiring on account of a 

partially closed valve.  

                                                           

 

2 www.savefuel.ca

  

3 www.hybridwaterpower.com 
4 http://alternativegassolutions.com 
5 www.watertogas.com 
6 www.eere.energy.gov/hydrogenandfuelcells/tech_validation/pdfs/fcm03r0.pdf 

http://www.savefuel.ca
http://www.hybridwaterpower.com
http://alternativegassolutions.com
http://www.watertogas.com
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Hydrogen has a higher autoignition temperature.  This feature is defined as the 

temperature at which the fuel/air mixture is ignited.  It limits the compression ratio since the 

mixture heats up during compression.  The compression ratio 
2

1

V

V
  is related to autoignition 

temperature 2T  by the following equation: 

1

2

1
12 V

V
TT  

Equation 1: Temperature compression ratio relation   

T1  is defined as the absolute initial temperature  

 

is the ratio of the specific heats 

From this equation it can be seen that higher autoignition temperature allows higher 

compression ratios.  According to the formula for theoretical thermal efficiency, efficiency 

increases with compression ratio for both the Otto (petrol) and the Diesel Cycles.  For the Diesel 

cycle, the term V3/V2 represents the volume ratio for the stage of constant pressure heat 

addition at the beginning of the power stroke. 
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Equation 2: Thermal efficiency for Otto Cycle  
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Equation 3:  Thermal Efficiency for Diesel Cycle7  

The ratio of specific heats  for hydrogen is 1.4 and 1.1 for gasoline, indicating that 

thermal efficiency should be higher using hydrogen fuel instead of gasoline.  This is due to the 

simpler structure of the hydrogen molecule, which makes the combustion reaction more 
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efficient.  One drawback to the higher autoignition temperature is that hydrogen is more 

difficult to ignite in compression ignition engines because higher temperatures are required.  

The flame speed of hydrogen at stoichiometric ratios is almost ten times that of 

gasoline.  This allows a closer match to the theoretical thermal efficiency since there are 

decreased losses to the surroundings. 

The diffusivity, or the ability of hydrogen to disperse in air is higher than other fuels.  

This facilitates formation of a uniform fuel air mixture to give more surface area for the 

combustion reaction to occur and more even expansion.  Furthermore, hydrogen disperses 

rapidly in the event of a leak, decreasing danger to users.    

Another design issue with hydrogen use is its low density, meaning a large volume is 

required for a competitive range compared to other fuels.  The energy density of the fuel air 

mixture is lower as well since the cylinder volume is restricted. 

In addition, the oxygen produced by the electrolyzer and sent to the air intake of the 

engine may increase fuel efficiency as well.  Using pure oxygen instead of air increases the 

actual combustion products, while reducing the amount of nitrogen in the combustion 

chamber.  Increased nitrogen has a detrimental effect on fuel efficiency and emissions, so is 

not desired in the combustion intake.  Oxygen enriched fuel mixtures tend to burn hotter and 

faster than standard air mixtures8, enhancing the effects of hydrogen.   It has been noted that 

industrial process (steel, aluminum, glass manufacture) fuel efficiency improvements can 

amount to 30-60%8 by retrofitting air/fuel to oxygen/fuel combustion.  The addition of 

significant quantities of oxygen to the combustion chamber can dramatically increase 

temperatures.  Using small quantities oxygen as a supplement avoids this issue, while 

potentially yielding some benefits.  

Supplemental hydrogen seeks to utilize the advantages of the fuel while minimizing 

the drawbacks.  Due to the increased flammability, ignition energy, flame speed, and diffusivity 

of hydrogen, it may be possible to decrease overall fuel consumption when used in a gasoline 

or diesel engine since leaner mixtures can be used and the cycle experiences fewer losses.    At 

the same time, few engine modifications are required, and only water and excess alternator 

electricity is needed to provide the hydrogen, resulting in a relatively low cost fuel.  Factors such 
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as higher ignition temperature cannot be fully utilized to increase fuel efficiency since extensive 

engine modifications would be required to change the compression ratio.  

Equipment Description  

The main equipment used in this investigation was the diesel fuelled electrical 

generator and the electrolytic cell.  The electrolytic cell separates hydrogen from oxygen in the 

water molecule.  This mixture of hydrogen and oxygen is then sent to the air intake of the diesel 

generator.   

Diesel Generator 

The diesel generator was an Amico model AH4000LE, rated power 4000W.  A 

summary of the main technical specifications are shown in the following table.  

Rated Frequency 60 Hz 

Revolution speed 3600 rpm 

Type Single cylinder, vertical, air-cooled 

Bore x stroke (mm) 78 x 64 

Displacement 305 cc 

Table 1: Generator Technical Specifications   

The modifications made to the generator to facilitate the test included removal of the fuel tank 

(for weight measurement), and removal of protective coverings for fuel line routing.  A fuel tank 

cradle was constructed to position the fuel tank close to the engine while enabling the weight 

of the fuel to be measured.  At the same time, this set up mitigated temperature and vibration 

interference. 

Hydrogen/oxygen Electrolytic cell (Hydrogen Generator) 

The hydrogen generator was a commercially available unit sold through 

www.savefuel.ca.  Its rated output is .33 L/min at 7-8 Amps current draw, rated for use in 2L, 4 

cylinder gasoline engines.  The apparatus is equipped with a flashback arrestor between the 

electrolytic cell and the output (air intake) to prevent ignition sources reaching the cell.  The 

flashback arrestor is simply a container which forces the gas to bubble up through water before 

http://www.savefuel.ca
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exiting to be used in an engine.  The actual hydrogen generator consists of two stainless steel 

threaded electrodes, on which are connected thin plates separated by approximately 0.25 in. 

The unit is shown pictorially in Figure 1.               

Figure 1: H2/02 generator section cut  

This electrolysis method of hydrogen/oxygen production was chosen primarily for its 

low cost and simple operation, but it is also safer than other forms of hydrogen supply.  The 

H2/02 generator does not store any flammable gas.  All gas is sent directly to the air intake of 

the engine.  Purchasing hydrogen in cylinders was an option as well, however, due to safety 

concerns and handling equipment required, it was not considered.  Commercial laboratory 

quality electrolyzers proved cost prohibitive9.  Furthermore, this style H2/02 generator is 

ubiquitous in any search for fuel efficiency improvement products. 

The gas is produced at atmospheric pressure and is drawn in by the vaccum in the air 

intake of the engine.  This installation method is suggested by the manufacturer for automobile 

applications.   
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Power Supply 

A power supply was needed to convert the household AC to DC for use by the 

electrolyzer. The power supply used for the electrolyzer in this experiment was a HYelec 

HY3020E.  The current could be controlled from 0-10A, voltage 0-30V.   However, the current 

and voltage were limited by the internal resistance of the electrolyzer.  

Measuring Instruments 

The equipment used to take measurements such as weight, time, and current were 

standard hardware store devices such that the experiment could be most economical.    

Loads  

The loads used in this experiment are standard forced air convection heaters each with 

a high and low setting.  In addition, an array of lights was constructed for smaller load 

increments.    

Primary Experimental Procedure  

The following procedure was used to determine the fuel consumption of the diesel generator 

with and without the H2/02 injection.  It was alternated 10 minutes at a time under the same 

load and atmospheric conditions to mitigate variations with temperature and provide quicker 

comparisons.  

Purpose 

The purpose of this investigation was to determine fuel consumption for the diesel electrical 

generator at a variety of loads. 

Equipment  

Timer/Stopwatch Diesel fuel Diesel generator Load measurement (ammeter) 

Dump loads (heaters) Scale Diesel generator Container (for fuel) 

Fire extinguisher Thermometer DC power supply  
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Set up   

Figure 2: Generator/weight measurement set up   

1. Load measurement device connected to genset and load 

2. DC power supply connected to electrodes on electrolyzer 

3. Scale placed on platform 

4. Fuel container filled to safe level 

5. Fuel container placed on scale 

Procedure  

1. Generator started per manufacturer’s instructions.  Load connected only after exhaust 

gas temperature leveled off (approximately five minutes). 

2. Fuel and tank weight measured together (enter Weight before) 

3. Power supply turned on for proper measurement of fuel consumption with H2/02 

injection, lit LED indicating proper operation. 

4. Connected load 1 and run 2 minutes (if measuring no load fuel consumption omit this 

step) 
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5. Zeroed scale to measure fuel consumed in  approximately 10 minute span by weighing 

fuel and tank together (enter Weight after) 

6. Connected load 2 and repeated step 3 

7. Readings taken as required to fill in the following table  

8. Checked exhaust gas temperature over range of loads to determine abnormal 

operation  

Load 1 (A) Load 2 (A) Time elapsed 
(min:s) 

Weight before 
(g) Weight after (g) 

      

Analysis 

From the values in the above table the specific fuel consumption (sfc) was calculated in g/kWe.  

These values were used as fuel consumption for this generator. 

Sources of Error  

Current measurement ±0.1A (multiplied by two for two loads connected load > 13.5A) 

Weight ±1g 

Time ±1s 

Human factors  

Calculated nominal sources of error (example assuming 10 minute elapsed time): 

%100
min

min
3600

11201.

1

%
calculatedalNo

calculatedalNo

hr

s
stimeMeasuredVAcurrentMeasured

gweightMeasured

Errorsfc 

Equation 3: Percent error for measurements   

A sample of test values was taken and the percent error resulting from the equipment 

ranged between and 1.60%-2.22%.  Human factors are more difficult to quantify but include 

the manual timing and weight measurement, rather than an automatic control system. 
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Early Findings 

The engine/generator was found to react slowly and inconsistently with variability of 

the load.  Thus, in the interest of reasonable results with the economical use of fuel, a 

secondary procedure was developed whereby the load remained constant and the H2/02 input 

varied.  

Secondary Experimental Procedure  

It was determined from the early findings that an optimized amount of gas would be useful to 

find for a variety of loads. 

Purpose 

To determine the optimum amount of H2/02 gas to use for a variety of loads 

Equipment 

Same as Primary Experimental Procedure 

Set up 

Same as Primary Experimental Procedure 

Procedure  

1. Generator started per manufacturer’s instructions.  Load connected only after exhaust 

gas temperature leveled off (or five minutes).  

2. Fuel and tank weight measured together (entered Weight before). 

3. Connected load 1 and run 2 minutes (if measuring no load fuel consumption  this step 

omitted). 

4. Power supply (10W) turned on for measurement of fuel consumption with H2/02 

injection  Lit LED checked to ensure operation. 

5. Zeroed scale to measure fuel consumed in  approximately 10 minute span by weighing 

fuel and tank together (entered Weight after). 

6. Recorded readings as required to fill in the following table). 

7. Increased DC power by 10W. 
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8. Repeated step 3-8 up to 50W DC power (omitted 4). 

9. Connected load 2 and repeated step 3. 

10. Checked exhaust gas temperature over range of loads to determine abnormal 

operation.  

Power  to 
Electrolyzer 

(W) 
Load 1 (A) Load 2 (A) Time elapsed 

(Min:s) 
Weight before 

(g) 
Weight after 

(g) 

       

Analysis  

From the values in the above table the specific fuel consumption (sfc) trends were determined 

for a set electrolyzer power to find the optimum H2/02 gas for the load supplied by the genset.  

Results 

Early results were plagued by inaccuracies brought upon by equipment and human 

factors.  Wherever economically viable, the instruments were upgraded to reduce these errors.  

This included a new scale which did not shut off automatically, thereby reducing the human 

impact on the results since it no longer was necessary to remove and replace the fuel tank on 

the scale.  Also, the ammeter was replaced as it became inoperative during test.  The test 

setup was altered since it was found that even small increases in the scale temperature 

produced very large distortions in the weight measurements.   Where results formed a 

repeatable pattern, they are presented in this report.  In some cases, the results were 

inconclusive, even erratic.  The reason for this may be due to the operation of the engine during 

the initial 20 hour break-in period.  During this period, engine components, and to a lesser 

extent, electrical generator equipment wears to standard operational level.  For example, 

bearings and cylinder walls become smoother as imperfections in material and/or 

manufacturing are evened out with friction between parts.  

The final results presented are from the testing of the genset which occurred after the 

20 hour break in period.  They are used since they are generally more conservative and the 

temperature interference has been eliminated.  
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Data are presented in percent fuel savings versus electrolyzer power to determine the 

optimal electrolyzer input for maximum gain.  The percent fuel savings is calculated relative to 

the baseline (no H2/02 injection) case using SFC. In equation form as follows: 

%100% 22 /

Baseline

InjectionOHBaseline

SFC

SFCSFC
savingsfuel 

Equation 4: Calculation of percent fuel savings   

Another interesting concept to determine was the “Process Efficiency”.   The process 

efficiency for the purposes of this investigation is defined as the ratio of the energy input to the 

electrolyzer to the energy offset by H2/02 injection.  It was assumed that the energy content of 

the diesel fuel was 38.6 MJ/L and the density was 846 g/L10 .   The energy flows were related 

by the following equations: 

used

saved

DCused

ACInjectionOHBaselinesaved

E

E
efficiencyocess

tPE

MJ

Wh

g

L

L

MJ
tPSFCSFCE

Pr

6.3

1000

846
6.38

22 / 

Equation 5: Process Efficiency calculations    

In fact, the Process Efficiency plot for a 20A load case showed a profound reduction in 

fuel consumption compared to the energy input to the electrolyzer as shown in Figure 3.  This 

led to an investigation to determine the source of the interference.  The value of almost 700% 

process efficiency was deemed over expected limits.  It was found that a 20-25°C increase in 

the scale temperature resulted in an error of more than 40% in the weight measured.  This was 

found by measuring baseline fuel consumption at the beginning and the end of the test.  These 

values are shown in Table 2.    

                                                           

 

10 PEC522 Notes-Energy 2000 – National Energy Policy Paper. DPIE, 1988 
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DC Power W % fuel savings Process efficiency (%) 

0 (beginning) 0 0 

0 (end) 44.28 Undefined 

9.72 43.69 694.64 

20.24 42.01 320.76 

30 46.63 240.78 

40.15 41.00 158.20 

49.61 34.34 107.24 

Table 2: Values derived from 20 Amp load test (includes temperature interference)    

Process Efficiency at 26 Amp Load
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Figure 3: Process Efficiency at 20 Amp Load with Temperature interference 
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Optimization Phase   

During the optimization phase, it was noted that generally the H2/02 injection had a 

positive effect on fuel efficiency at low loads while gradually decreasing to a negative effect at 

high loads.  Unfortunately, load cases were limited to 10A, 14A, 20A, 23A, due to the limited 

dump loads and time restrictions.  In all, five hours out of a total 35 hours of test data was 

deemed valid, after discounting temperature interference, instrument failures, and process 

modifications.  At the 35 hour point the engine began operating too erratically and often failing 

to operate at all such that no valid data could be derived from it.  Unfortunately there was 

insufficient time for troubleshooting and repair, so testing was halted.   

10 Ampere Load  

Percent fuel efficiency improvement vs electrolyzer power (~10A AC load)
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Figure 4: 10 Amp Load - Optimization  

As seen from Figure 4 (Run 2), the point where the fuel is offset most significantly is at 

approximately 10 WDC.  At that point 18.79% of the diesel fuel is offset by the addition of 

supplemental H2/02.  It is also important to note the large variability from Run 1 to Run 2.  

Since runs were performed on different days, atmospheric conditions may have produced this 

discrepancy.  Run 1 and 2 both showed positive results.  Higher air fuel ratios mean that the 
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combustion temperatures are lower (shown by decreased exhaust gas temperature of around 

100°C from high to low load), as a result, the combustion may not be complete.  This fact is 

evidenced by the greater specific fuel consumption of the engine under low load conditions.  

The baseline SFC is presented for reference in Figure 12. The increased efficiency may be 

because the H2/02 increased the flame speed and decreased the ignition temperature of the 

mixture for more complete combustion. 

Process Efficiency at 10A Load
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Figure 5: Process Efficiency at 10A Load  

From Figure 5 it can be seen that the optimal process efficiency peaks above 100%. 

This is an important design consideration since at those conditions, it actually increased overall 

efficiency to have a diesel genset running an electrolyzer to inject H2/02 back into the engine.  

At values less than 100%, yet still greater than 0%, it may only be logical to use an electrolyzer 

as a dump load.  The leveling out of the efficiency curve shows that added H2/02 still provided 

some benefit, but with diminishing returns on input energy.    
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14 Ampere Load   

Percent fuel efficiency improvement vs electrolyzer power (~14A AC load)
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Figure 6: 14 Amp load – Optimization   

It can be seen from Figure 6 that the values were very close to the range of sources of 

error (1.60-2.22%), but there are some interesting points.   The peak efficiency occurs when the 

electrolyzer is set to 30 W DC.  This may be as a result of the greater amount of fuel that 

wasinvolved in the combustion reaction, making it more complex and slower.  Thus more H2/02  

was needed to provide any benefit such as increasing flame speed.  One important trend, when 

compared to Figure 4, to note is that the relationship between fuel consumption and optimal 

H2/02 injection is not linear.  That is, for an increase in fuel consumption of 13% the optimal 

electrolyzer power required increases 300% or more.   It could be that the actual optimum 

requires increasing electrolyzer power even further as shown by the upward trend of Run 1.     

The process efficiency curve (Figure 7), as expected, complements Figure 6, but it is 

important to note that the curve never rises over 8%.  As a result, with the equipment in this 

investigation, the electrolyzer would only be operated as a dump load.  However, if low H2/02 

inputs were avoided, efficiency improvements are possible.  
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Process Efficiency at 14A Load
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Figure 7: Process Efficiency at 14A Load  

20 Ampere Load  

The following plot at the 20 A load condition shows general efficiency improvements 

over the baseline case but shows some indication that the optimum H2/02 output may be 

beyond the capability of the power supply circuit.  The reason for this suspicion is the non linear 

relationship between H2/02 output and fuel consumption as shown in the 14 A load case and 

the pattern of both 10 A and 14 A load case, stable efficiency except for the relatively 

pronounced optimum point, which is missing in Figure 8.    

The optimum process efficiency plot from Figure 9 emphasizes the steady results 

shown in Figure 8.  Since the same efficiency (within 1.5%) improvement was found over the 

range of electrolyzer power tested the maximum process efficiency occurs at the lowest input 

power (10 W).  
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Percent fuel efficiency improvement vs electrolyzer power (~20A AC load)
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Figure 8:  20 Amp load – Optimization     

Process Efficiency at 20A Load
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Figure 9: Process Efficiency at 20 A Load   
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23 Ampere Load  

The largest load tested (23 A) proved to be the breaking point in efficiency 

improvements.  It was noted that efficiency improvements were not realized.  While the 

decreases in efficiency noted were not large, it is important to avoid operating a system in this 

mode for extended periods.  However, it can also be noted that the curve begins an upward 

trend at higher electrolyzer power that might reveal a positive optimum point with a higher DC 

power supply capacity.  If time allowed, it would be interesting to explore this by modifying the 

circuit to increase amperage to the electrolyzer.  It was decided not to present the process 

efficiency plot as it was entirely negative.  

Percent fuel efficiency improvement vs electrolyzer power (~23A AC load)
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Figure 10: 23 Amp load – Optimization    

It was originally thought that the reason for the rise in fuel consumption was due to the 

decreased air fuel ratio at high loads.  The air fuel ratio is defined as the proportion of the mass 

of air to the mass of fuel used in the combustion reaction. As the amount of fuel injected into 

the cylinder is increased, it requires a greater amount of air for complete combustion.  Since 

hydrogen is much less dense than air, it may have displaced the combustion air thus leaning 
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the air/fuel mixture.  The H2/02 gas may have recombined to form water and was thus not 

used for combustion of the fuel.  More fuel would be automatically injected to compensate for 

the lean mixture while still meeting the load.   For a diesel engine, the air/fuel ratio is variable 

with loading, atmospheric conditions, and engine design.  The following assumptions were 

made to approximate the air fuel ratio for the Amico diesel engine used in this experiment.   

 
Each intake stroke is restricted to the rated displacement of the engine (305 cc) 

 

Constant speed of 3600 rpm (from manufacturer’s specifications) 

 

Density of air 1.225 kg/m3 (standard Temperature and pressure at sea level)  
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Equation 6: Air usage of Amico engine     
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Figure 11: Approximation of air fuel ratio for Amico engine  

It can be seen from Figure 11 that air fuel ratio increased with load from 

approximately 34:1 at 10 A load to 22:1 at 23 A load.   The volume of air displaced by H2/02 

was calculated using the following procedure: 
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The power supply was set to maximum (9.4A, 5.7V) and connected to the electrolyzer 

for 2.534 hours.  The weight of water converted to H2/02 gas was 13 grams.  The volume of 

hydrogen was calculated using the following method: 

Known: 

Hydrogen=0.090 g/L 

Oxygen=1.429 g/L 

222 22 OHOH

 

Equation 7: Electrolysis reagents  

2 mole H2O =36 g 

2 mole H2=4 g=MMH2 

1 mole O2=32g=MMO2 

Assumed gases exist as diatomic molecules 
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Equation 8: Calculation of volumetric flows of electrolyzer  

This indicates that the H2/02 was displacing 10.275 L/hr of combustion air.  Since the 

engine consumes about 275 L/min of combustion air, it can be assumed that the 

supplemental H2/02 has a negligible effect due to volume displacement.  There are no external 

signs of precombustion at the higher loads, but exhaust gas temperatures are certainly higher 

(160°C at idle, 300°C at high loads) so that may contribute somewhat to the decreased 
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efficiency.  Precombustion may occur when the H2/02 mixture experiences a sufficient 

temperature increase to combust.  Since the mixture has a low autoignition temperature, it 

may burn when injected to a hotter cylinder before the fuel is even injected.  As a result of the 

uncertainty surrounding the operation at high loads with H2/02 injection, more research is 

needed.  

Discussion 

Significance of Results   

Any neutral party results from testing these H2/02 generators are significant since 

there is very little verified  evidence available.  In fact, during the course of this experiment a 

single report was found originating from a third party15, unfortunately only the abstract was 

available.  The bulk of information available remains on manufacturers’ or “tinkerers’” websites 

and can be discounted as claims and lacking detail for proper system integration (eg. process 

efficiency).  Despite the challenges of working with a small engine to produce reliable results, 

there was some evidence derived from this experiment to support the use of supplemental 

H2/02 injection to reduce fuel consumption in some cases. For comparison, Umpqua Energy, an 

Oregon company uses the same principle for its H2/02 generators, stating expected fuel 

savings to be in the 3-12% in transport applications11.  Canadian Hydrogen Eenergy Company 

guarantees a 10% savings12. Assuming a 10% increase in fuel economy for diesel applications, 

the resulting fuel savings would amount to 451800 barrels of diesel fuel per day in the United 

States alone (based on EIA consumption estimates for diesel fuel)13.  Also, the technology has 

the potential to decrease emissions based on Umpqua Energy claims as shown in Table 3: 

Emission Percent Reduction 

NOx Up to 60 

Carbon Monoxide Up to 100 

Hydrocarbons Up to 100 

Particulates Up to 95 

                                                           

 

11 www.umpquaenergy.com 
12 www.chechfi.ca

  

13 http://tonto.eia.doe.gov/dnav/pet/pet_sum_sndw_dcns_nws_w.htm (Energy Information 
Administration) 

http://www.umpquaenergy.com
http://www.chechfi.ca
http://tonto.eia.doe.gov/dnav/pet/pet_sum_sndw_dcns_nws_w.htm
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Opacity (Smoke) Up to 70 

Table 3: Claimed emission reductions with H2/02 injection11   

Thus the addition of H2/02 gas has the potential to provide additional benefits even if 

efficiency gains are marginal.  The significance of this is that it eliminates a potential drawback 

of H2/02 injection such that the device may be used in additional applications for its additional 

benefits rather than simply where commercially logical.   

Another significant finding was the pronounced improvement in diesel efficiency at low 

load factors with H2/02 injection.   Load factor is the proportion of the rated load of the 

generator (4kW) in this case.  Increasing fuel economy in the low load regime makes the 

technology more applicable in wind diesel grids. For example, the Denham wind diesel grid14 

incorporated low load diesels to support the grid frequency while wind energy is high since it is 

too variable to provide the expected power quality.  At the same time, the diesel generator is 

able to follow the load.  If operated at low load in an efficient manner, a larger proportion of 

electricity is available for spinning reserve without bringing an additional generator online. The 

low load diesels were specially designed such that maintenance problems arising from 

operation at low load were mitigated, with added cost.  In theory, with supplemental H2/02 

injection the improved combustion characteristics and increased efficiency may make it 

possible to use a standard diesel to accomplish the same task. The following plot derived from 

the results of this experiment show the potential effectiveness of H2/02 injection at lower loads, 

it can be noted by the expanding gap between the baseline and H2/02 injected SFC values 

below 30% rated capacity. 

                                                           

 

14 PEC520: Case Studies of Renewable Energy Systems notes or 
http://www.verveenergy.com.au/mainContent/sustainableEnergy/OurPortfolio/Denham_Wind
_Farm.html 

http://www.verveenergy.com.au/mainContent/sustainableEnergy/OurPortfolio/Denham_Wind
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Load vs SFC
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Figure 12: Comparison of Baseline and Minimum H2/02 injected SFC    

An additional factor in the adoption of supplemental H2/02, as in the Denham case, 

could be the elimination of dump loads such as boilers while maintaining the wind penetration 

level.  The boiler could be replaced by an electrolyzer so that during periods of high winds, 

hydrogen fuel is created from the excess energy.  Although, additional cost and safety issues 

arise when hydrogen and oxygen are separated and stored.  There would exist the opportunity 

to use the hydrogen for transport, as in fuel cells, or other uses where economically viable.  

According to Levene, J. Kroposki, B. Sverdrup, G, hydrogen produced by wind energy can be cost 

competitive with petroleum fuel.  Hydrogen produced at point of use is currently estimated to 

be $5.55US/kg (2006 figures) in the short term and $2.27US/kg in the long term.  One 

kilogram of hydrogen is about equivalent in energy to 1 gallon of gasoline (currently 

$3.29US/gal in the Seattle area).   

The advantages of supplemental hydrogen injection could be extended to small SAPS 

(Stand Alone Power Supplies) incorporating wind turbines and diesel generators.   The 

components of the supplemental H2/02 electrolyzer are inexpensive and simple enough that 

one can be custom made for any application.  The electrolyzer uses DC, traditionally output 

from wind turbines directly, thus avoiding power losses and cost of additional power 
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conditioning equipment.   The opportunity to increase wind penetration in wind diesel with 

H2/02 injection shows some promise, but further investigation is required. 

Limitations      

Unfortunately, very little published data exists to support or refute the findings from 

this investigation.  One such report supporting the findings in this experiment, a PhD thesis 

from the University of Tasmania, did find that: 

“The research particularly established that vitiation and enrichment effectiveness was 

only realised at low rather than high loads indicating that hydrogen achieved more 

than diesel mass substitutions”15 

This statement does support the evidence found in this investigation; however, this was using 

an indirect injection engine with pure hydrogen, and quantitative results were unavailable.  As a 

result of the limited amount of complementary data, the scope is limited to this engine and 

H2/02 electrolyzer under the prevailing conditions in the location tested. There are claims of 

10% fuel efficiency11,12 increases with the same technology in comparable situations.  Further 

research is required to verify the effects of H2/02 injection in a variety of conditions for other 

sizes and types of internal combustion engines for the technology to become more widely 

adopted.  As noted in the results, the technology may end up being limited to transport or other 

(eg. off-grid) applications where the electricity used for the electrolyzer would otherwise be 

wasted.  

Achievements   

Despite the many frustrations experienced over the course of this experiment, overall, 

it was beneficial.  Many previous assumptions were displaced with first hand knowledge.  For 

example, originally exhaust gas temperatures were assumed to be relatively constant, and 

higher.  It was found that the temperature varied by 140°C.  Through problem solving and 

testing, hands-on knowledge of electrical generating equipment, test instrumentation, process 

improvement and diesel engines was gained.  Through theoretical research, more was learned 

about the diesel cycle, particularly in comparison to the Otto cycle.  In addition, some positive 
                                                           

 

15 Hafez, HA   
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fuel efficiency improvements were found under certain load conditions.  Particularly, the results 

here were found to merit investigation for the potential application in wind diesel grids. Another 

important achievement of this experiment is in expanding the body of knowledge on the 

subject of H2/02 supplementation.  In sum, many of the learning objectives of the experiment 

were achieved even though hydrogen injection may not be the panacea for fuel efficiency under 

all conditions. 

Conclusion    

The injection of H2/02 gases into the diesel in this investigation did show some 

promise of fuel efficiency improvement.  It was found that savings of over 18% were possible 

with this technology, at low load conditions, in the situation tested.  However, as the load 

increased, the savings were reduced, and gradually, the fuel consumption actually increased 

with H2/02 injection.  Consequently, the system incorporating H2/02 must be carefully designed 

to discontinue injection before it causes detrimental effects.  The technology does have a 

potential application in wind diesel grids such as Denham or small SAPS to decrease fuel 

consumption and increase wind penetration with integrated system control.  It could readily be 

adapted to transport applications if the vehicle tends to be lightly loaded.   Fuel efficiency 

improvement is an important issue since fossil fuels are a non-renewable resource.  

Additionally, using water to offset fossil fuels promotes energy independence, since it is a 

compound that can be found anywhere there are humans.  The amount of water used would 

not risk any supply as it is extremely low consumption.   

While this experiment did not test emissions from the engine, Hafez, HA15 states: 

“Contrary to the common belief, green house gases, nitrogen oxides, hydrocarbons and 

opacity substances do not coincidently all increase and/or decrease. Indeed, this 

experiment demonstrated that although the diesel-hydrogen nitrogen monoxide (NO) 

wet-emissions at all injection rates were partially lower than the diesel baseline, 

carbon oxides, hydrocarbon emissions, opacity (N) and absorption coefficients (k) were 

higher. In other words, a measure taken to limit the harm done to human health can 

increase the damage to the environment and vice versa.” 

Thus, emissions control is not a significant advantage to H2/02 injection.  
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In remote, developing areas, where diesel fuel is used for many applications such as 

backup electrical power, water pumping for irrigation and drinking, and transportation, fuel 

savings could result in a higher quality of life as greater financial resources are made available 

for education and healthcare.  

The experiment succeeded in enhancing the field of knowledge in general, and for the 

author.  In addition, it was shown that H2/02 injection into diesel engines can provide fuel 

savings, but more research is necessary to broader the application of this technology. 

Opportunities     

There are many opportunities for further research in the field of H2/02 injection and 

fuel efficiency improvement. First of all, an expansion of the scope into other internal 

combustion engines would be extremely useful.  Unfortunately, the experiment was limited to 

loads above 25% of the rated capacity of the genset, yet the Denham wind diesel grid operated 

the gensets down to 7%.  Any following research should include the load regime between 0-

25% of rated load.  

It would be interesting to determine the effects of hydrogen and oxygen injected 

separately, as there is some evidence that either may have its benefits.  

While more complicated, injecting pressurized hydrogen at the same time as the fuel, 

may have the potential for increased fuel savings over a broader load range.  Pressurized 

oxygen is not recommended to be injected into an internal combustion engine since excess 

heat resulting in engine damage is probable. 

Lessons Learned    

It is possible that the most valuable portion of this experiment is the provision of 

lessons learned as well as some encouragement to carry on with further experiments in this 

field.  These are presented to save the researcher who continues the study of H2/02 injection 

for fuel efficiency improvement as much time and money as possible.   

Firstly, it is recommended that a larger, higher quality engine be used, incorporating 

multiple cylinders, to better simulate the aggregate effects of the H2/02 injection.  With the 

small, single cylinder engine, it is not immediately scaleable to multiple cylinder engines, due 

to air intake variables.  Thus, an experiment using a multiple cylinder engine would be more 
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useful.  The engine used in this experiment was an inexpensive model, thus it provided a source 

of frustration in cases when it would not operate.  If a flow meter is used, it is more difficult to 

find one that measures the minute fuel flows consumed by the Amico. So the greater fuel 

consumption could supply more accurate results.  Also, if possible, the engine should be only 

minimally modified.  The test setup should be suited to the engine, not the other way around.  

Invariably, fuel lines will be impossible to find replacements, for example.  A higher quality 

engine is more likely to yield consistent results.  Unfortunately the Amico was unstable, as 

shown by the difference in Run1 and 2 in Figure 4 and Figure 5. 

In hindsight, a gasoline/petrol engine would have been preferred over a diesel for this 

experiment.  They are cheaper to buy, more prolific, and currently the fuel is less expensive.  An 

additional benefit is the provision of a DC circuit while the engine is running.  This is possible 

with diesel engines as well, but not with the Amico model in this experiment.   It is worth 

checking if there is a DC circuit since that would make the power supply to the electrolyzer 

much easier to integrate.  It was learned after the purchase of the Amico about the lack of DC 

supply, as a result, an additional component had to be purchased to convert household AC to 

DC.  In addition, much of the focus in the marketing of H2/02 generators is for gasoline 

applications.  Gasoline is inherently less efficient than diesel due its lower compression ratio so 

it may be that higher gains are possible with spark ignition engines. 

The design and construction of the H2/02 generator simple and inexpensive, so it 

would be worthwhile to construct one custom made for the application.  Ideally, this would 

produce a H2/02 generator with known electrical consumption versus output characteristics, 

suited to the engine.  Likely, constructing a custom made H2/02 generator would be less 

expensive as well.  

With greater resources, it would be beneficial to incorporate more advanced sensors 

such as flow meters for fuel consumption and H2/02 output, temperature sensors for exhaust 

gas and cylinders, and an automatic test control system.  The control system could vary the 

load and take instantaneous reactions of the engine to H2/02 input as well as averaging the 

data.  Instantaneous measurements were impossible with the setup in this experiment, but 

may prove interesting. Also, a diesel engine is not a welcome neighbour for noise and toxic 

emissions, thus it would be advantageous to avoid manual data taking, when possible.  At the 
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same time, greater precision would reduce sources of error.  Wasted time due to failed 

instruments would be mitigated. 
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